
OLSR Guide for Linux

1.1 Installation:
1. The latest release is 0.6.0. Fetch the latest release from http://www.olsr.org/?q=download.

2. Unpack, compile and install the source code:

 # tar jxvf olsrd-x.y.z
 # cd olsrd-x.y.z
 # make build_all
 # make install_all

3. The olsrd gets installed to /usr/bin/
4. Follow the instructions at the end of the installation.

Check out the /etc/olsrd.conf config file, and change values to fit your system. All values in
this file can be overridden with command line options to olsrd. The main options to change are:

 # Debug level(0-9)
 # If set to 0 the daemon runs in the background
 Debug 1
 # IP version to use (4 or 6)
 Ipversion 6
 # A list of whitespace separated interface names
 Interfaces eth1

Later on, when you know OLSRd is configured correctly, you may set "DEBUG" to 0 to make it
run in the background. You may then also add it to your init scripts. But to test that everything first,
set this to at least 1 (setting this higher will produce a lot more info messages on APM, forwarding,
parsing of the config file etc.)

2.1 Using OLSRd

2.1.1. On one host
When OLSRd is installed and configured, it can be started as root with:
 # olsrd

All the settings in /etc/olsrd.conf can be overridden by command line options:
 # olsrd -i eth1 -d 1 -ipv6

Would start olsrd listening on interface eth1 using IPv6 and with debug messages.

We start olsrd:

 # olsrd -i eth1 -d 1 -ipv6
 *** olsrd – 0.6.0 ***

http://www.olsr.org/?q=download

 hello interval = 2.00 hello int nonwireless: = 4.00
 tc interval = 5.00 polling interval = 0.10
 neighbor_hold_time = 6.00 neighbor_hold_time_nw = 12.00
 topology_hold_time = 15.00 tos setting = 16
 hna_interval = 15.00 mid_interval = 5.00
 Willingness set to 3 - next update in 20.000000 secs
 Using IP version 6
 Using multicast address ff05::15

 ---- Interface configuration ----

 eth1:
 Address: fec0:106:2700::10
 Multicast: ff05::15
 Interface eth1 set up for use with index 0

 Main address: fec0:106:2700::10

 NEIGHBORS: l=linkstate, m=MPR, w=willingness

 Thread created - polling every 0.10 seconds
 neighbor list: 11:43:17.214807
 neighbor list: 11:43:19.194967
 neighbor list: 11:43:21.395046
 neighbor list: 11:43:23.604800
 neighbor list: 11:43:25.694875

This shows all the settings OLSRd is using. You may override these by either specifying it in
the config file (/etc/olsrd.conf) or specify it at the command line. Read the OLSR
RFC for a description on what all these settings means.

OLSRd found our interface. If you are using OLSRd with multiple interfaces, "Multiple
Interface Declaration" (MID) messages will be generated.

If you are using OLSRd with multiple interfaces, it will pick the first interface specified as the
"main" address.

Since no other hosts are running OLSRd, this list is empty.

Another thing worth noticing, is that an entry is added to our routing table:
 # route -A inet6
 Destination: Next Hop Flags Metric Ref Use Iface
 ...
 ff05::15/128 ff05::15 UAC 0 1 1 eth1
 ...

This is the IPv6 multicast address OLSR is using to talk to other nodes running OLSR.

2.1.2. Adding other hosts
There is no point in using OLSRd on only one node, so we add some nodes. You will then see the
"neighbor list" gets updated:

 neighbor list: 12:55:14.733586

http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#tuning
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#interface
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#adr
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#list

 neighbor list: 12:55:18.803585
 Willingness for fec0:106:2700::11 changed from 0 to 3 - UPDATING
 neighbor list: 12:55:22.763585
 fec0:106:2700::11:l=0:m=0:w=3[2hlist:]
 neighbor list: 12:55:26.833589
 fec0:106:2700::11:l=1:m=0:w=3[2hlist:]
 Willingness for fec0:106:2700::12 changed from 0 to 2 - UPDATING
 neighbor list: 12:55:30.903585
 fec0:106:2700::12:l=0:m=0:w=2[2hlist:]
 fec0:106:2700::11:l=1:m=0:w=3[2hlist:]
 neighbor list: 12:55:34.863585
 fec0:106:2700::12:l=0:m=0:w=2[2hlist:]
 fec0:106:2700::11:l=1:m=0:w=3[2hlist:]
 neighbor list: 12:55:39.153586
 fec0:106:2700::12:l=1:m=0:w=2[2hlist:fec0:106:2700::11:]
 fec0:106:2700::11:l=1:m=0:w=3[2hlist:fec0:106:2700::12:]
 neighbor list: 12:55:43.443605
 fec0:106:2700::12:l=1:m=0:w=2[2hlist:fec0:106:2700::11:]
 fec0:106:2700::11:l=1:m=0:w=3[2hlist:fec0:106:2700::12:]

Another node detected (node B). This specifies the willingness of a node to carry and forward
traffic for other nodes. Here the new node fec0:106:2700::11 is willing to forward
traffic. A host with low battery may not be willing to forward large amount of traffic, - so it
will proclaim a lower willingness value (routing based on powerstatus is available as a
plugin).

The node has been added to our routing table. We can not (yet) reach any other node by way
of this node, since the 2-hop neighbor list ([2hlist:]) is empty. A 2-hop neighbor is a
node heard by a neighbor.

Here is a third node (node C) running OLSRd.

After a short time, when all nodes have been updated and routes calculated, we may also
reach any of the other nodes via the other. The 2-hop neighbor list ([2hlist:]) is
populated: We can reach node B via C.

Here we can reach node C via B.

You will also see the routing table is updated with the new hosts:
 # route -A inet6
 Destination: Next Hop Flags Metric Ref Use Iface
 ...
 fec0:106:2700::11/128 :: UH 1 0 0 eth1
 fec0:106:2700::12/128 :: UH 1 0 0 eth1
 ...

The real beauty of OLSR is when you add a bunch of nodes and move them around. You can still
reach each one of them either directly (if they are close), or through other nodes.

http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#will
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#newhost
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#thirdhost
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#triangle
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#triangle2

2.1.3 Movement
When every node can reach every other node, it's no fun. Let's start moving the nodes, so that node
"A" and "B" are out of (radio) range of each other. So when we move node "A" far enough away so
that it can't hear node "C", all traffic must go through node "B":

We move our three nodes so that node A and C must speak through node B to reach each other.

Tip: Instead of physically moving the nodes around, you can use ip6tables. You can drop all
packet using the MAC-address. You just need to block on one node:
 # ip6tables -A INPUT -m mac --mac-source XX:XX:XX:XX:XX:XX -j DROP

The output from OLSRd on host A is then:

 neighbor list: 13:22:35.693587
 fec0:106:2700::11:l=1:m=1:w=3[2hlist:fec0:106:2700::12:]
 neighbor list: 13:22:40.093588
 fec0:106:2700::11:l=1:m=1:w=3[2hlist:fec0:106:2700::12:]
 neighbor list: 13:22:44.053594
 fec0:106:2700::11:l=1:m=1:w=3[2hlist:fec0:106:2700::12:]
 neighbor list: 13:22:48.233594
 fec0:106:2700::11:l=1:m=1:w=3[2hlist:fec0:106:2700::12:]
 neighbor list: 13:22:52.193605
 fec0:106:2700::11:l=1:m=1:w=3[2hlist:fec0:106:2700::12:]

We can reach node B directly, and via node B we can reach node C.

The routing table also gets updated. For node A to reach node C it must go through node B:
 # route -A inet6
 Destination: Next Hop Flags Metric Ref Use Iface
 ...
 fec0:106:2700::11/128 :: UH 1 1 0 eth1
 fec0:106:2700::12/128 fec0:106:2700::11 UGH 2 0 0 eth1
 ...

3.1 What about HNA messages?
" In order to provide this capability of injecting external routing information into an OLSR
MANET, a node with such non-MANET interfaces periodically issues a Host and Network
Association (HNA) message, containing sufficient information for the recipients to construct an
appropriate routing table."

" An example of such a situation could be where a node is equipped with a fixed network (e.g., an
Ethernet) connecting to a larger network as well as a wireless network interface running OLSR." ---
RFC3626: OLSR, section 12 (page 51).

OLSR with a gateway (GW), that sends out HNA messages. All the other nodes may then be
accessing the "Internet"

To have one node, act as a gateway and send out HNA messages, you must change the HNA6 in

http://www.ietf.org/rfc/rfc2501.txt
http://www.linux.org/docs/ldp/howto/OLSR-IPv6-HOWTO/olsrlinux.html#onlyone

/etc/olsrd.conf:

 # HNA IPv6 routes
 # syntax: netaddr prefix
 # Example Internet gateway
 HNA6 0:: 0

When you start OLSRd, you will see the node is sending out HNA messages periodically:
 ...
 Sending HNA (48 bytes)...
 ...

When the other nodes receives a HNA message, they update their routing table:
 # route -A inet6
 Destination: Next Hop Flags Metric Ref Use Iface
 ...
 ::/0 fec0:106:2700::1 UG 1 0 0 eth1
 ...

You may also have multiple nodes in a MANET to act as gateways (sending out HNA messages).
Each mobile node then use the nearest gateway.

	1.1 Installation:
	2.1 Using OLSRd
	2.1.1. On one host
	2.1.2. Adding other hosts
	2.1.3 Movement

	3.1 What about HNA messages?

